
The
CrossTwine

Project

Technical White Paper

Ever been bitten by the suboptimal performance of a dynamic language?
Tired of having to “drop down” to C to implement your business logic?
Interested in providing your customers with either the Python®1 or Ruby
language for scripting, but wary of the consequences? Wondering how to
bring your own proprietary language up to modern standards without hiring
a team of virtual machine experts? This paper's objective is to present you
with the current state of the CrossTwine technology, and let you assess
how well it addresses your concerns.

Introduction
Since the dawn of computing, software companies have tried to move to
higher- and higher-level languages as soon as reasonable, to bring projects
to completion faster and gain a competitive advantage. A rapid evolution of
hardware and implementation techniques allowed the world to move from
assembly to C, C++, and later to Java and C#. Interesting outliers such as
Lisp and Smalltalk managed to fill niche markets, putting their users in a
strange situation: stuck with “dead horses,” yet grateful for their powerful
and unique capabilities.

Even though Sun and Microsoft provide very attractive platforms with
reasonably versatile languages, a few have started turning their heads to a
range of alternatives that offer some of the benefits of Lisp and Smalltalk,
and have graduated from “scripting” to “dynamic” status by virtue of being
put to serious use. More than a few, actually—enough for both giants to
start incorporating support for some of them into their platforms.

The usual caveat is that the available implementations of these productivity
enhancers are quite slow. We will explore a number of the reasons in this
paper, but suffice to say that Sun and Microsoft plan to leverage their
existing technology to provide new implementations—and use them as bait
to attract users to their respective environments.

The CrossTwine project takes a different stance: our goal is to augment
existing implementations with advanced technology, retaining all of their
flavor and goodies, and without imposing a “platform tax.” While doing so,
we develop a toolkit of building blocks and a portfolio of recipes that permit
achieving “economies of scale” across languages. The results of our efforts
are commercially-supported, performance-enhanced, “professionalized”
drop-in replacements that allow and follow evolutions of the language and
remain fully compatible with all but the most exotic extension and
embedding scenarios.

1 “Python” and the Python logos are trademarks or registered trademarks of the Python
Software Foundation, used with permission.

Copyright © 2009 Damien Diederen, crosstwine.com 1

About the author: after
many years spent
playing a “wizard” in the
software industry,
Damien Diederen
decided to do something
about the performance of
dynamic languages. He
can be reached at

dd@crosstwine.com

or by calling

+49 174 34 89 428.

http://crosstwine.com/
mailto:dd@crosstwine.com
http://crosstwine.com/

Business Environment and Challenges
The videogame industry has been a forerunner: their focus on delivering
excellent A.I. and gameplay, both of which require a lot of experimentation
and a fast turnaround despite the pressure of extremely short deadlines,
has resulted in an increasing adoption of the Open Source language Lua as
a component of modern games.2 Openness, simplicity, high-level of
abstraction, and easy extensibility/embedding are often touted as key
factors for that commercial success.

More recently, Adobe released Lightroom, an end-user photo manipulation
product which also embeds Lua. This time, however, it did not happen
under the hood: the language was used to write the complete user interface
of the application—40% of the total code base. That audacious choice
allowed the interaction designers to come up with a novel user interface
that has since proven quite popular.

The Python programming language is probably the most prominent such
language; the same tenets of openness, simplicity and extensibility are
usually mentioned as reasons for its popularity. Companies such as
Google, USA (NASA's main Shuttle support contractor), Industrial Light &
Magic and a lot of others have been stress-testing the default
implementation for years—and returned to it after each reevaluation.

Ruby, yet another contender in the same space, stepped out of its native
Japan in dramatic fashion when David Heinemeier Hansson released
“Ruby on Rails,3” a web development framework which created and
instantly filled a new category of its own. “Don't repeat yourself” is the
motto, and the framework leverages the reflective capabilities of the
language in an unprecedented way to achieve its objective of being
“optimized for programmer happiness and sustainable productivity.”

Excellent. And Good Enough
Most testimonials praise the following qualities, which apply to each of the
languages under consideration:

• Openness cannot be underrated. People are—not unreasonably—
wary of depending on single-vendor proprietary technologies.
Becoming the milking cow is to be avoided at all cost, be it by using
“inferior” solutions;

• Simplicity is probably is a close second. These languages have
been gathering feedback from large and vibrant communities of
users for years, feedback which has been refined and integrated by
a “benevolent dictator” who keeps an eye on the general design;

• Extensibility is key for two reasons: first, it is very unlikely that the
base language would provide a special effects company with the
exact tools they need, yet custom add-ons have to fit in
homogeneously lest simplicity be lost; second, being able to drop
down to C/C++ to implement the bits exhibiting inadequate
performance is often required;

2 http://lua-users.org/wiki/LuaUses
3 http://rubyonrails.org/

Copyright © 2009 Damien Diederen, crosstwine.com 2

The Python
programming language
is often embedded within
a larger software system
to provide scripting
functionality.

http://crosstwine.com/

• Embedding proves to be important at some point in most
scenarios, either because it becomes desirable to integrate some of
the knowledge and assets developed on sideband projects into the
mainline, or because the prototyping abilities and productivity
improvements brought to the table by dynamic languages find a
growing place in traditional product development.

The Problem
Quite a few of the testimonials also mention how the languages are “fast
enough.” Which, while true, is not exactly a praise: no matter how thankful
both developers and managers are for the high-level goodness, the not-
uncommon need to drop to low-level plumbing and integration certainly
results in some cursing. Not to mention the swearing that happens when an
otherwise perfectly adequate language has to be rejected for a task—just
because of the performance characteristics of its implementation.

Moreover, companies have started turning away from the “throw hardware
at it” mantra: they realize that tremendous economies can be achieved by
consolidating some computations “in the cloud,4” where IT support costs
are inexistent, but billing is directly proportional to the amount of processor
time used. Performance matters again, while productivity doesn't cease to.

With their supporters having to choose between existing, flexible but slow
implementations, and the promise of (potentially) faster ones tied to
heavyweight—if not proprietary—platforms such a Java and .net, we
believe that most popular dynamic languages are not achieving their
potential level of adoption.

The fierce competition in the web browser space pushed Google, Apple,
Mozilla and Opera to recently start competing on the performance of their
JavaScript implementations. As JavaScript, the “web page language,”
shares a lot of characteristics with Python, Ruby and other siblings, this
proves to the world that dynamic languages don't have to be slow.

Not everybody is going to jump ship, however: not only must existing
investments be preserved, but JavaScript lacks a useful standard library, a
package system, and mature extension/embedding mechanisms. Instead,
people expect the same improvements to be brought to the tools they use
for their business-critical operations; or, as Joe Gregorio puts it:5

“What we are privileged to witness, something that wasn't happening
a year ago, and will probably be complete in another year or two, is
the professionalization of scripting languages. There was a time when
you could whip out a parser in lex and yacc, stitch together a naive
VM and throw it over the wall and you'd have a new scripting
language. Those days are coming to a close…”

The CrossTwine project aims to provide a de-facto solution to that problem,
across languages, that solves it in the most efficient possible manner: by
introducing an agile technology—and an associated methodology—which
overcomes the deficiencies of the original implementations while retaining
all their desirable qualities.

4 http://en.wikipedia.org/wiki/Cloud_computing
5 http://bitworking.org/news/321/The-Professionalization-of-Scripting-Languages

Copyright © 2009 Damien Diederen, crosstwine.com 3

Faster implementations
would enable the use of
dynamic languages in a
lot more situations.

http://crosstwine.com/

How CrossTwine Helps
There is certainly a lot of variety in the landscape we have been looking at,
but the common lack of performance can be chiefly attributed to two
properties:

1. Extreme dynamism, and

2. Simplistic implementations.

Let's assume that dynamism is a desirable feature, or it would have
disappeared as the language evolved. An important objective of ours is to
preserve the dynamism of these languages by applying auto-adaptive
solutions—as opposed to “tuning knobs.”

What might be less obvious is that the availability of a simplistic, but “clean”
implementation is also desirable: it allows power users to assist the
inventor in evolving the language, fostering a lively community and healthy
progress curve. We certainly do not intend to disrupt that ecosystem:
“forking” languages is not an objective; our solution intends to accelerate,
but provide otherwise indistinguishable behavior from reference
implementations.

Technical highlights
This section will focus on various common qualities of the target languages,
the pain points caused by their simplistic implementations, and how our
CrossTwine Linker kernel technically addresses them.

Language Hallmarks

Various trade-offs made during the design of a language evolve into
“hallmarks” that are well defended by its supporters: the—sometimes
arbitrary—initial choices morph into very useful specificities users come to
rely on, and become an integral part of the experience.

Such hallmarks, however, actively prevent the cross-pollenization of
implementations, and that lack of horizontal component renders the latter
extremely vulnerable to the law of diminishing returns; after a while, slightly
improving any particular aspect requires herculean efforts. Worse: when
they happen, these efforts often end up being rejected because they tend
to touch and “uglify” many parts of the system.

The idea of countering diminishing returns by leveraging cross-language
economies of scale is not new: there have been quite a few attempts at
overarching architectures, but they have proven to be an extremely difficult
task. The recent “dynamic language” initiatives tied to the Java and .net
platforms try to reach the same goal by extending and repurposing existing
technology.6

Our unique approach is based on a “toolkit” of versatile components
developed in heavily-templatized C++, which allows us to “inject” the
platform into the language, as opposed to the more common solution of
reimplementing the language on top of an existing, possibly tailored

6 These, however, are likely to succeed, if only because their sponsors spare no expense
in trying to draw potential customers to the platform.

Copyright © 2009 Damien Diederen, crosstwine.com 4

We believe the fear of
vendor lock-in to be a
major deterrent to the
adoption of Smalltalk.

http://crosstwine.com/

platform. Compile-time specialization permits code reuse without incurring
runtime cost, whereas the low-level nature of C++ provides the required
level of control.

Other benefits of the toolkit approach include:

• Easy prototyping: components are initially developed within a
particular host to achieve an immediate objective, the useful
commonality being extracted later, when the then-proven solution is
generalized to accommodate other languages;

• Incremental improvements: improving upon an existing
implementation allows us to keep the language—and its test suite—
working at all stages of development, in TDD-style.7 In addition to
enabling extremely short iteration cycles, this permits the early
discovery of the inevitable surprising corner cases.

No Mandatory Compilation Step

One of the distinguishing characteristic of most dynamic languages is that
they do not require an explicit compilation step. Moreover, they usually
provide an “eval” primitive that allows the injection of new code into the
environment at runtime. Implementations widely differ in how they massage
source code text into an exploitable data structure, e.g.:

• Ruby 1.8 parses the source into an abstract syntax tree (AST); no
further processing is done as the evaluator takes AST fragments as
input;

• Ruby 1.9 parses the source into an AST which is then compiled to
direct threaded code to be executed by an efficient interpreter;

• Python parses the source into an AST which is then compiled to
bytecode to be dispatched by a “big switch” interpreter.8

None of these translate the program into native code to be executed
directly by the CPU. Instead, the implementations provide interpreters,
which have the advantage of relative ease of maintenance and portability
over native code compilers, but result in an additional level of overhead
during execution.

Our kernel does not disable these mechanisms, but further analyzes their
products, and prepends executable fragments with a tiny stub that hands
control back when about to be interpreted. What happens on subsequent
hits depends on “flags” that are set and updated by various mechanisms
and heuristics inside the virtual machine:

• The stub is inactive: control is relinquished and execution continues
using the default platform mechanisms;

• The fragment is uncompiled: an initial compilation is performed,
during which an abstract bytecode closely modeled after the host
language's own primitives is converted to generic native code.9
Upon successful “just-in-time” (JIT) compilation, the stub becomes

7 http://en.wikipedia.org/wiki/Test-driven_development
8 The Python interpreter recently incorporated a patch to activate an alternative “computed

goto” dispatcher, but the bytecode is left untouched.
9 The use of per-language, tailored instructions is a key factor in our approach.

Copyright © 2009 Damien Diederen, crosstwine.com 5

Interpretation can be
faster than compilation
for code that is rarely
executed.

http://crosstwine.com/

compiled, and execution proceeds as per the next point;

• The fragment is compiled: the default platform mechanisms are cut
short, execution is diverted to native code for the whole fragment.10
Compiled is the normal state for frequently-executed code paths.

• The fragment is pending recompilation: as in the uncompiled
case, the abstract bytecode is JIT-compiled to native code, but this
time with profile-guided optimizations (PGOs11) enabled. Pending
recompilations are caused by various active subsystems detecting
opportunities for optimistic compilation, or repeatedly violated
invariants; these are discussed in the following subsections.

While native compilation brings a non-negligible amount of performance in
itself, it also lets us instrument the code to gain insight about its dynamic
execution profile, to be used later in PGO: lightweight bookkeeping is done
on execution counts, the concrete types seen at method call sites are
remembered, etc.; basically, a record is kept for every operation that
involves dynamic behavior, to allow the framework to later deduce the static
equivalent.

Note that even though JIT-generated native code is not a hard requirement
for monitoring the early runs, it has been chosen over instrumenting the
interpreters for the following reasons:

• Instrumenting an interpreter requires invasive changes, and we
would rather leave the default mechanisms untouched. Moreover,
such changes would have to be statically compiled in, which makes
it impossible to totally disable them at runtime.

• The various bookkeeping utilities would have be written in C, and
could not rely on our cross-language infrastructure. As we have
complete control over native code, we can arrange for it to call
reusable utilities which have been customized using template
specialization.

Our code generators currently only support the ubiquitous AMD/Intel x86-64
instruction set. Other backends could be implemented given enough
demand, an obvious candidate being the ARM architecture, which is very
popular in the embedded market. We are still waiting to see how well it
fares in the presence of Intel's new “Atom” offerings—some of which
implement the x86-64 ISA.

Dynamic Dispatch

Dynamic dispatch means that the mapping between an abstract “message”
sent to an object and its concrete implementation is delayed until the latest
possible moment. The dispatch mechanisms offered by our target
languages offer a lot of flexibility, supporting declaration-free coding as well
as techniques such as “duck-typing” and “monkey-patching.”

The fact that methods can be redefined at any time, however, combined
with operators such as + offering the full flexibility of a method call, puts

10 The native code might, however, decide to drop back to the interpreter under exceptional
circumstances. Conversely, multiple fragments can be chained without involving the
interpreter.

11 http://en.wikipedia.org/wiki/Profile-guided_optimization

Copyright © 2009 Damien Diederen, crosstwine.com 6

CrossTwine Linker does
not currently make use
of the LLVM (llvm.org)
framework. Some of our
techniques require full
control of the generated
code.

http://crosstwine.com/

these languages at a serious performance disadvantage compared to their
mostly-static equivalents.

Indeed, a considerable amount of work has to be shifted at runtime, even
though most call sites up end up repeatedly invoking the same primitives.
The default Python and Ruby implementations use a variety of caching
schemes to speed up the common case, but a lot of things remain to be
determined every time a method call happens.12

Our solution implements stateful call sites, which combine inline caching13
(IC) with optimistic, profile-guided compilation. In their base state, call sites
perform minor bookkeeping around dynamic dispatch via the default
mechanisms, and notify their associated “lifecycle manager” of interesting
events such as the repeated invocation of a same implementation.

“Hot” call sites matching one of the patterns found in an (extensible) library
of optimizable cases are quickly transitioned to a corresponding advanced
state. A variety of such states exist per host and operation, and can have
effects ranging from thunk patching (a limited form of self-modifying code)
to complete optimistic recompilation. Advanced states must:

1. Minimize the runtime impact of the call site;

2. Provide a fallback “slow path,” which performs additional checks
and bookkeeping before either fixing-up or dropping down to less
optimized code;

3. Guard the optimized fast path, and divert to the fallback in the event
its invariants are not met.

Point 1 is the raison d'être of stateful call sites. As an extreme example,
consider the use of the + operator in the expression 3+x, where x is known
to hold a floating-point value most of the time: during optimistic
recompilation, the full method call—which includes call frame setup, type
coercion of the first argument, and boxing of the result—gets replaced by a
single addsd instruction.

Points 2 and 3 are pure overhead. To minimize the impact of point 3, which
stands in the critical path, optimistic guards are usually used; they consist
in a very short instruction sequences which can lead to false negatives, in
which case a simple fix-up is done by the provided fallback before reverting
to normal execution (minor vs. major misses).

A limited, but growing amount of inter-site collaboration helps in partly
eliminating redundant checks and unnecessary boxing so that e.g. * in the
larger (3+x)*2 expression suppresses a test for “floatness,” and receives
the intermediate result via a floating-point register. Similarly, the literal 2 is
coerced at compile-time, and loaded directly into another floating-point
register. The general mechanism is abstracted as a concept of “transfers.”

Note how no accounting is done in the fast path; an orthogonal mechanism
provides an estimate of the number of executions for each extended basic
block; these counters are used by heuristics to decide whether to

12 The Python and Ruby 1.8 interpreters use static caches, whereas Ruby 1.9 opted for a
more elaborate inline caching mechanism, with one slot per call site. While possibly
more efficient, the interpreted nature of the VM still prevents the latter from caching more
than just method lookup.

13 http://en.wikipedia.org/wiki/Inline_caching

Copyright © 2009 Damien Diederen, crosstwine.com 7

http://crosstwine.com/

deoptimize the fast path in the case of repeated major misses.

At all times, each particular instance of generated code is under the control
of a “lifecycle manager” which communicates with the stateful call sites,
schedules recompilations, and recycles unused code buffers. Multiple
versions of generated code can be alive for each stubbed fragment at any
given time, be it to be used as a fallback or because they are active in the
call chain of one thread of execution.

It was previously mentioned that we are not using LLVM, but that
framework might reenter the picture later as a powerful way to optimize
combinations of very hot fragments that can be optimistically reduced to
long chains of primitive operations.

Property Access

As far as property access is concerned, objects in the aforementioned
languages consist of little more than dictionaries, per-instance mappings of
names to values, which has the following implications:

• Variables can be added/removed to instances at any time;

• A full “dictionary lookup” is required for each access;

• Variables do not exist at a fixed offset across a set of objects
sharing a type.

Again, these have a major effect on the performance that can be expected
compared to member access in more static languages.

Our kernel currently speeds up repeated dictionary lookups with a constant
key by keeping a finger on the last entry; this strategy is particularly
effective in loops which execute numerous accesses to the same property.
Given that in the Python programming language, for example, method calls
are split into distinct lookup and invocation phases, and that the former
goes through generic property resolution, this condition is not as
uncommon as it may seem.

An experimental implementation of Self-style maps, which, combined with a
dedicated IC, should provide property access times comparable to what
static languages enjoy, is currently disabled because of a net slowdown in a
number of synthetic benchmarks—for reasons that still are to be
investigated; this slowdown is going to be one of our points of focus in the
near future.

Current Status
So far, our technology has been implanted in the “standard” development
versions of CPython (3.1alpha+), and of the next-generation Ruby
interpreter (1.9.1+). The augmented virtual machines pass the full test suite
of their respective language with the same results as the default interpreter,
including:

• Garbage Collection tests: a naive implementation of ICs and other
caching mechanisms can result in object retention, and prevent
proper garbage collection; our components use a variety of weak
reference and guard “tricks” to avoid withholding more objects than

Copyright © 2009 Damien Diederen, crosstwine.com 8

After an initial research
phase, our focus was
moved to 100%
compatibility.

http://crosstwine.com/

the basic environment;

• Introspection tests: even when running natively compiled code at
full speed, our implementation reports correct source line numbers
and fully supports various other introspective facilities lots of
modules and utilities rely on;

• Debugging tests: the Python platform supports a number of
advanced debugging features such as line-by-line tracing and
jumping, which are exploited by the debugger to provide its
services. Our implementation supports activation of the tracing
functionality at arbitrary points, including when native frames are
present in the call chain.

Note that we also have a—very preliminary—augmented version of the
former generation Ruby interpreter (1.8+): that version is very likely to
remain in use for a long period of time as it is currently used in production
on most “Rails” sites, and the two generations of the Ruby language are not
quite compatible.

Our focus being on performance, we have been tracking our progress using
a number of more-or-less synthetic benchmarks. While benchmarks do not
necessarily reflect real-world scenarios, they are useful tools for isolating
inefficiencies, and subsequently measure the effectiveness of targeted
solutions. We present some of the observed results in the following
sections.

Note that the timings of the augmented versions comprise the complete
startup and shutdown of the virtual machine, including the various analysis,
bookkeeping, and compilations tasks performed by our embedded kernel.

CPython 3.1alpha+

CPython, the default and most widely used Python interpreter, was our first
target. Illustration 1 presents the current execution times in seconds for the

Copyright © 2009 Damien Diederen, crosstwine.com 9

Illustration 1: CPython 3.1alpha+ Benchmark Results

bpnn_shedskin.py

bitops-3bit-bits-in-byte.py

pybench.py InstanceAttribute

pybench.py Compare{Int,Flo}

0 5 10 15 20 25

Pure CPython
CPython + CrossTwine

The numbers in this
section reflect the state
of CrossTwine Linker as
of February 23, 2009.

http://crosstwine.com/

following benchmarks (lower is better):

• bpnn_shedskin: A back propagation neural network benchmark
based on a real-world use case. Compute intensive, it performs
numerous floating-point operations on the elements of matrices
stored as object properties (stressing floating-point math, property
access, and array access). Our engine results in a global speedup
of 3.8×.

• bitops-3bit-bits-in-byte: A synthetic benchmark lifted from
the SunSpider suite, commonly used to compare modern JavaScript
implementations. Stresses local variable access, and low-level bit-
twiddling operations; global speedup is 3.9×.

• pybench.py InstanceAttribute, Compare{Int,Flo}: Synthetic
benchmarks bundled with the Python distribution. Stress object
access and number comparisons; speedups are 5.6× and 4.0×,
respectively.

A lot of other performance tests have been built from various sources, and
periodic runs have been setup to monitor the performance impact of our
changes, e.g.: Knuth–Morris–Pratt string searching algorithm, 2.9×, binary
tree search, 3.5×. In general, we expect our current Python implantation to
result in a speedup of 2 to 4× on compute-intensive tasks.

MRI 1.9.1+

MRI (Matz's Ruby Interpreter) 1.9.1 is the basis for the still-to-be-released
Ruby 2.0 language. Illustration 2 presents the current execution times in
seconds for the following benchmarks, which come from the suite bundled
with the implementation (lower is better):

• bm_app_pentomino: A memory intensive benchmark which
stresses array access and mapping operations (i.e. array.each {
|x| … }); speedup is 2.5×.

Copyright © 2009 Damien Diederen, crosstwine.com 10

Illustration 2: MRI 1.9.1+ Benchmark Results

bm_app_pentomino.rb

bm_so_mandelbrot.rb

bm_so_ackermann.rb

bm_so_matrix.rb

0 2 4 6 8 10 12

Pure MRI
MRI + CrossTwine

http://crosstwine.com/

• bm_so_mandelbrot: Generates a bitonal representation of the
Mandelbrot set; stresses iteration primitives and floating-point
operations. Speedup is 4.0×.

• bm_so_ackermann: A very synthetic recursive benchmark which
stresses control flow; speedup is 3.3×.

• bm_so_matrix: performs multiplication of large integer matrices,
global speedup is 2.8×.

While the execution engine underlying the default MRI 1.9.1 is YARV, a
fairly efficient interpreter which leaves less “low-hanging fruit” to be
collected than the Python one, we expect our current Ruby implantation to
also yield a speedup of 2 to 4× on compute-intensive code.

This is because this more recent integration uses a newer generation of the
technology incorporating a lot of improvements that still have to make their
way into the Python line; we expect further speedups in the latter as soon
as we start reintegrating these improvements.

MRI 1.8.6+

While our adaptation of MRI 1.8.6 is in its very early stages, initial testing
already show speedups of 3× and 4.1× on the bm_so_mandelbrot and
bm_app_pentomino benchmarks—while still passing the complete test
suite.

Even though its underlying execution engine is radically different from the
one in 1.9.1, and is based on AST interpretation instead of bytecode, we
have been able to perform the integration and obtain the results above after
only four days of development—a testimony of the flexibility of our
framework and methodology.

Conclusion
Despite its youth, the CrossTwine Linker toolkit already goes a long way
towards making the “dynamic languages are slow” concern a thing of the
past.

We do not invent a new language, nor do we reimplement enormous
amounts of libraries and modules. Instead, we rely on the vast experience
and effort gathered by various communities during many years, and provide
a final push to bump existing implementations over some of their barriers of
adoption.

These languages already have lots of notable qualities, and will evolve to
gain many others; while contributing negatively to performance, simplistic
implementations are an important vehicle for that evolution to happen. A
totally orthogonal approach allows us to provide commercially-supported,
high-performance, yet fully compatible alternatives for the scenarios that
require them—relieving their adopters from a serious source of concerns.

Please visit crosstwine.com or email info@crosstwine.com for
additional information.

Copyright © 2009 Damien Diederen, crosstwine.com 11

The “transfers”
mechanism still has to
be reintegrated in the
Python branch.

http://crosstwine.com/
mailto:info@crosstwine.comX
http://crosstwine.com/

	Technical White Paper
	Introduction
	Business Environment and Challenges
	Excellent. And Good Enough
	The Problem

	How CrossTwine Helps
	Technical highlights
	Language Hallmarks
	No Mandatory Compilation Step
	Dynamic Dispatch
	Property Access

	Current Status
	CPython 3.1alpha+
	MRI 1.9.1+
	MRI 1.8.6+

	Conclusion

