ZooKeeper Dynamic Reconfiguration

by

Table of contents

@Y= V= TSP 2
2 Changes to Configuration FOIMEL............cccveiieeiiieiie et re e 2
2.1 Specifying the ClIENt POIt.........c.cceeiice e 2
2.2 The standaloneEnabled flag..........ccvvveiiiieiieriee e 3
2.3 Dynamic configuration Fil..........cooiiiiininieeeee s 3
2.4 Backward COMPELTDHTTY........eoeeeeeeeesesee e e 5
3UPGrading t0 3.5.0...c..ueieiiiei e e e e neene s 5
4 Dynamic Reconfiguration of the ZooKeeper Ensemble..........cccooeveeivccein i 6
4.1 Retrieving the current dynamic configuration............cccceecveeeereeieseeseese e 6
4.2 Modifying the current dynamic configuration.............cccevveierieeseesesseseese e 7

5 Rebalancing Client CONNECLIONS...........cooieieririerinieie et 13

ZooKeeper Dynamic Reconfiguration

1 Overview

Prior to the 3.5.0 release, the membership and all other configuration parameters of
Zookeeper were static - loaded during boot and immutable at runtime. Operators resorted to
"rolling restarts" - amanually intensive and error-prone method of changing the configuration
that has caused data |oss and inconsistency in production.

Starting with 3.5.0, “rolling restarts’ are no longer needed! ZooK eeper comes with full
support for automated configuration changes. the set of Zookeeper servers, their roles
(participant / observer), al ports, and even the quorum system can be changed dynamically,
without service interruption and while maintaining data consistency. Reconfigurations are
performed immediately, just like other operations in ZooK eeper. Multiple changes can be
done using a single reconfiguration command. The dynamic reconfiguration functionality
does not limit operation concurrency, does not require client operations to be stopped during
reconfigurations, has a very ssmple interface for administrators and no added complexity to
other client operations.

New client-side features allow clients to find out about configuration changes and to

update the connection string (list of servers and their client ports) stored in their ZooK eeper
handle. A probabilistic algorithm is used to rebalance clients across the new configuration
servers while keeping the extent of client migrations proportional to the change in ensemble
membership.

This document provides the administrator manual for reconfiguration. For a detailed
description of the reconfiguration algorithms, performance measurements, and more, please
See our paper:

Shraer, A., Reed, B., Malkhi, D., Junqueira, F. Dynamic Reconfiguration of
Primary/Backup Clusters. In USENIX Annual Technical Conference (ATC) (2012),
425-437

Links: paper (pdf), slides (pdf), video, hadoop summit slides

2 Changes to Configuration Format

2.1 Specifying the client port

A client port of a server isthe port on which the server accepts client connection requests.
Starting with 3.5.0 the clientPort and clientPortAddress configuration parameters should
no longer be used. Instead, thisinformation is now part of the server keyword specification,
which becomes as follows:

server.<positive id> = <addressl>:<portl1>:<port2>[:role];
[<client port address>:]<client port>

Page 2

https://www.usenix.org/conference/atc12/technical-sessions/presentation/shraer
http://www.slideshare.net/Hadoop_Summit/dynamic-reconfiguration-of-zookeeper

ZooKeeper Dynamic Reconfiguration

The client port specification is to the right of the semicolon. The client port addressis
optional, and if not specified it defaultsto "0.0.0.0". Asusual, roleis aso optional, it can be
participant or observer (participant by default).

Examples of legal server statements:
e server.5 = 125.23. 63. 23: 1234: 1235; 1236

e server.5 = 125.23.63. 23:1234: 1235: partici pant; 1236
e server.5 = 125.23.63. 23:1234: 1235: observer; 1236

e server.5 = 125.23.63.23:1234: 1235; 125. 23. 63. 24: 1236
e server.5 =

125. 23. 63. 23: 1234: 1235: parti ci pant; 125. 23. 63. 23: 1236

2.2 The standaloneEnabled flag

Prior to 3.5.0, one could run ZooK eeper in Standalone mode or in a Distributed mode. These
are separate implementation stacks, and switching between them during run timeis not
possible. By default (for backward compatibility) standaloneEnabled is set to true. The
consequence of using this default isthat if started with a single server the ensemble will not
be allowed to grow, and if started with more than one server it will not be allowed to shrink
to contain fewer than two participants.

Setting the flag to false instructs the system to run the Distributed software stack even if there
isonly asingle participant in the ensemble. To achieve thisthe (static) configuration file
should contain:

st andal oneEnabl ed=f al se

With this setting it is possible to start a ZooK eeper ensemble containing a single participant
and to dynamically grow it by adding more servers. Similarly, it is possible to shrink an
ensemble so that just a single participant remains, by removing servers.

Since running the Distributed mode allows more flexibility, we recommend setting the flag to
false. We expect that the legacy Standalone mode will be deprecated in the future.

2.3 Dynamic configuration file

Starting with 3.5.0 we're distinguishing between dynamic configuration parameters, which
can be changed during runtime, and static configuration parameters, which are read from a
configuration file when a server boots and don't change during its execution. For now, the
following configuration keywords are considered part of the dynamic configuration: server,
group and weight.

Dynamic configuration parameters are stored in a separate file on the server (which we call
the dynamic configuration file). Thisfileislinked from the static config file using the new
dynamicConfigFile keyword.

Page 3

ZooKeeper Dynamic Reconfiguration

Example

zoo_replicatedl.cfgzoo_replicatedl.cfg

ti ckTi me=2000

dat aDi r =/ zookeeper/ dat a/ zookeeper 1

initLimt=5

syncLim t =2

dynamni cConfi gFi | e=/ zookeeper/ conf/zoo_replicatedl. cfg. dynamni c

zoo_replicatedl.cfg.dynamiczoo_replicated1.cfg.dynamic

server. 1=125. 23. 63. 23: 2780: 2783: parti ci pant; 2791
server.2=125. 23. 63. 24: 2781: 2784: parti ci pant; 2792
server. 3=125. 23. 63. 25: 2782: 2785: parti ci pant; 2793

When the ensemble configuration changes, the static configuration parameters remain
the same. The dynamic parameters are pushed by ZooK eeper and overwrite the dynamic
configuration files on al servers. Thus, the dynamic configuration files on the different
servers are usually identical (they can only differ momentarily when areconfiguration is
in progress, or if anew configuration hasn't propagated yet to some of the servers). Once
created, the dynamic configuration file should not be manually altered. Changed are only
made through the new reconfiguration commands outlined below. Note that changing the
config of an offline cluster could result in an inconsistency with respect to configuration
information stored in the ZooK eeper log (and the specia configuration znode, popul ated
from the log) and is therefore highly discouraged.

Example 2

Users may prefer to initially specify asingle configuration file. The following is thus also
legal:

zoo_replicatedl.cfgzoo_replicatedl.cfg

ti ckTi me=2000

dat aDi r =/ zookeeper/ dat a/ zookeeper 1

initLimt=5

syncLi m t =2

clientPort=2791 // note that this line is now redundant and therefore not
reconmended

server. 1=125. 23. 63. 23: 2780: 2783: parti ci pant; 2791

server. 2=125. 23. 63. 24: 2781: 2784: parti ci pant ; 2792

server. 3=125. 23. 63. 25: 2782: 2785: parti ci pant; 2793

The configuration files on each server will be automatically split into dynamic and
static files, if they are not already in this format. So the configuration file above will be
automatically transformed into the two filesin Example 1. Note that the clientPort and

Page 4

ZooKeeper Dynamic Reconfiguration

clientPortAddress lines (if specified) will be automatically removed during this process, if
they are redundant (asin the example above). The original static configuration fileis backed
up (in a.bak file).

2.4 Backward compatibility

We till support the old configuration format. For example, the following configuration fileis
acceptable (but not recommended):

zoo_replicatedl.cfgzoo_replicatedl.cfg

ti ckTi me=2000

dat aDi r =/ zookeeper/ dat a/ zookeeper 1
initLimt=5

syncLim t =2

clientPort=2791

server. 1=125. 23. 63. 23: 2780: 2783: parti ci pant
server. 2=125. 23. 63. 24: 2781: 2784: parti ci pant
server. 3=125. 23. 63. 25: 2782: 2785: parti ci pant

During boot, a dynamic configuration file is created and contains the dynamic part of the
configuration as explained earlier. In this case, however, the line "clientPort=2791" will
remain in the static configuration file of server 1 sinceit is not redundant -- it was not
specified as part of the "server.1=..." using the format explained in the section Changes to
Configuration Format. If areconfiguration isinvoked that sets the client port of server 1, we
remove "clientPort=2791" from the static configuration file (the dynamic file now contain
this information as part of the specification of server 1).

3 Upgrading to 3.5.0

Upgrading arunning ZooK eeper ensemble to 3.5.0 should be done only after upgrading your
ensemble to the 3.4.6 release. Note that thisis only necessary for rolling upgrades (if you're
fine with shutting down the system completely, you don't have to go through 3.4.6). If you
attempt arolling upgrade without going through 3.4.6 (for example from 3.4.5), you may get
the following error:

2013-01-30 11:32:10,663 [nyid:2] - |INFO [|ocal host/127.0.0.1: 2784: Quor unCnxManager

$Li st ener @98] - Received connection request /127.0.0.1: 60876

2013-01-30 11:32:10,663 [nmyid:2] - WARN [l ocal host/127. 0. 0. 1: 2784: Quor unCnxManager @49] -
Invalid server id: -65536

During arolling upgrade, each server is taken down in turn and rebooted with the new 3.5.0
binaries. Before starting the server with 3.5.0 binaries, we highly recommend updating the
configuration file so that all server statements "server.x=..." contain client ports (see the
section Specifying the client port). As explained earlier you may leave the configuration in

Page 5

ZooKeeper Dynamic Reconfiguration

asinglefile, aswell asleave the clientPort/clientPortAddress statements (although if you
specify client portsin the new format, these statements are now redundant).

4 Dynamic Reconfiguration of the ZooKeeper Ensemble

The ZooK eeper Java and C API were extended with getConfig and reconfig commands that
facilitate reconfiguration. Both commands have a synchronous (blocking) variant and an
asynchronous one. We demonstrate these commands here using the Java CL1, but note that
you can similarly use the C CLI or invoke the commands directly from a program just like
any other ZooK eeper command.

4.1 Retrieving the current dynamic configuration

The dynamic configuration is stored in a special znode ZooDefs.CONFIG_NODE =/
zookeeper/config. The new conf i g CLI command reads this znode (currently it is simply
awrapper toget /zookeeper/ confi g). Aswith normal reads, to retrieve the latest
committed value you should do async first.

[zk: 127.0.0.1:2791(CONNECTED) 3] config

server. 1=l ocal host: 2780: 2783: parti ci pant ;| ocal host: 2791
server. 2=| ocal host: 2781: 2784: parti ci pant ;| ocal host: 2792
server. 3=l ocal host: 2782: 2785: parti ci pant ;| ocal host: 2793
ver si on=400000003

Notice the last line of the output. Thisisthe configuration version. The version equals to
the zxid of the reconfiguration command which created this configuration. The version

of the first established configuration equals to the zxid of the NEWLEADER message
sent by the first successfully established leader. When a configuration is written to a
dynamic configuration file, the version automatically becomes part of the filename and
the static configuration file is updated with the path to the new dynamic configuration file.
Configuration files corresponding to earlier versions are retained for backup purposes.

During boot time the version (if it exists) is extracted from the filename. The version should
never be altered manually by users or the system administrator. It is used by the system to
know which configuration is most up-to-date. Manipulating it manually can result in data
loss and inconsistency.

Just likeaget command, theconf i g CLI command accepts the - wflag for setting a watch
on the znode, and - s flag for displaying the Stats of the znode. It additionally accepts a new
flag - ¢ which outputs only the version and the client connection string corresponding to the
current configuration. For example, for the configuration above we would get:

[zk: 127.0.0.1: 2791(CONNECTED) 17] config -c
400000003 | ocal host: 2791, | ocal host: 2793, | ocal host : 2792

Note that when using the API directly, thiscommand is called get Confi g.

Page 6

ZooKeeper Dynamic Reconfiguration

As any read command it returns the configuration known to the follower to which your
client is connected, which may be dlightly out-of-date. One can use the sync command for
stronger guarantees. For example using the Java API:

zk. sync(ZooDef s. CONFI G_NCDE, voi d_cal | back, context);
zk. get Confi g(wat cher, call back, context);

Note: in 3.5.0 it doesn't really matter which path is passed tothesync() command as
al the server's state is brought up to date with the leader (so one could use a different path
instead of ZooDefs.CONFIG_NODE). However, this may change in the future.

4.2 Modifying the current dynamic configuration

Modifying the configuration is done through ther econf i g command. There are two modes
of reconfiguration: incremental and non-incremental (bulk). The non-incremental simply
specifies the new dynamic configuration of the system. The incremental specifies changesto
the current configuration. Ther econf i g command returns the new configuration.

A few examplesarein: Reconf i gTest . j ava, Reconfi gRecoveryTest . java and
Test Reconfi gServer. cc.

4.2.1 General

Removing servers. Any server can be removed, including the leader (although removing
the leader will result in a short unavailability, see Figures 6 and 8 in the paper). The server
will not be shut-down automatically. Instead, it becomes a'non-voting follower". Thisis
somewhat similar to an observer in that its votes don't count towards the Quorum of votes
necessary to commit operations. However, unlike a non-voting follower, an observer doesn't
actually see any operation proposals and does not ACK them. Thus a non-voting follower
has a more significant negative effect on system throughput compared to an observer. Non-
voting follower mode should only be used as atemporary mode, before shutting the server
down, or adding it as afollower or as an observer to the ensemble. We do not shut the
server down automatically for two main reasons. The first reason is that we do not want

all the clients connected to this server to be immediately disconnected, causing aflood

of connection requests to other servers. Instead, it is better if each client decides when to
migrate independently. The second reason is that removing a server may sometimes (rarely)
be necessary in order to change it from "observer” to "participant” (thisis explained in the
section Additional comments).

Note that the new configuration should have some minimal number of participants in order
to be considered legal. If the proposed change would leave the cluster with less than 2
participants and standalone mode is enabled (standaloneEnabled=true, see the section The
standaloneEnabled flag), the reconfig will not be processed (BadArgumentsException). If

Page 7

https://www.usenix.org/conference/usenixfederatedconferencesweek/dynamic-recon%EF%AC%81guration-primarybackup-clusters

ZooKeeper Dynamic Reconfiguration

standalone mode is disabled (standal oneEnabled=false) then its legal to remain with 1 or
more participants.

Adding servers: Before areconfiguration is invoked, the administrator must make sure that
aquorum (majority) of participants from the new configuration are already connected and
synced with the current leader. To achieve this we need to connect a new joining server to the
leader beforeit is officially part of the ensemble. Thisis done by starting the joining server
using an initial list of serverswhich istechnically not alegal configuration of the system but
(a) contains the joiner, and (b) gives sufficient information to the joiner in order for it to find
and connect to the current leader. We list afew different options of doing this safely.

1

Initial configuration of joinersis comprised of serversin the last committed configuration
and one or more joiners, where joinersarelisted as observers. For example, if servers
D and E are added at the same timeto (A, B, C) and server C is being removed, the
initial configuration of D could be (A, B, C, D) or (A, B, C, D, E), where D and E

are listed as observers. Similarly, the configuration of E could be (A, B, C, E) or (A,

B, C, D, E), where D and E are listed as observers. Note that listing the joinersas
observerswill not actually make them observers- it will only prevent them from
accidentally forming a quorum with other joiners. Instead, they will contact the
serversin the current configuration and adopt the last committed configuration (A, B, C),
where the joiners are absent. Configuration files of joiners are backed up and replaced
automatically as this happens. After connecting to the current leader, joiners become non-
voting followers until the system is reconfigured and they are added to the ensemble (as
participant or observer, as appropriate).

Initial configuration of each joiner is comprised of serversin the last committed
configuration + the joiner itself, listed as a participant. For example, to add a new
server D to a configuration consisting of servers (A, B, C), the administrator can start

D using aninitial configuration file consisting of servers (A, B, C, D). If both D and E
are added at the sametimeto (A, B, C), theinitial configuration of D could be (A, B,

C, D) and the configuration of E could be (A, B, C, E). Similarly, if D isadded and Cis
removed at the same time, the initial configuration of D could be (A, B, C, D). Never list
more than one joiner as participant in theinitial configuration (see warning below).
Whether listing the joiner as an observer or as participant, it is aso fine not to list all the
current configuration servers, aslong as the current leader isin the list. For example,
when adding D we could start D with a configuration file consisting of just (A, D) if A is
the current leader. however thisis more fragile sinceif A fails before D officially joins

Page 8

ZooKeeper Dynamic Reconfiguration

the ensemble, D doesn’t know anyone else and therefore the administrator will have to
intervene and restart D with another server list.

WarningWarning

Never specify more than onejoining server in the sameinitial configuration as participants.
Currently, the joining servers don’'t know that they are joining an existing ensemble; if multiple
joiners are listed as participants they may form an independent quorum creating a split-brain
situation such as processing operations independently from your main ensemble. It is OK to list
multiple joiners as observersin an initial config.

Finally, note that once connected to the leader, a joiner adopts the last committed
configuration, in which it is absent (the initial config of the joiner is backed up before being
rewritten). If the joiner restarts in this state, it will not be able to boot sinceit is absent

from its configuration file. In order to start it you' Il once again have to specify aninitial
configuration.

Modifying server parameters: One can modify any of the ports of aserver, or itsrole
(participant/observer) by adding it to the ensemble with different parameters. This works

in both the incremental and the bulk reconfiguration modes. It is not necessary to remove
the server and then add it back; just specify the new parameters asif the server is not yet

in the system. The server will detect the configuration change and perform the necessary
adjustments. See an example in the section Incremental mode and an exception to thisrulein
the section Additional comments.

It is also possible to change the Quorum System used by the ensemble (for example, change
the Majority Quorum System to a Hierarchical Quorum System on the fly). This, however, is
only allowed using the bulk (non-incremental) reconfiguration mode. In general, incremental
reconfiguration only works with the Majority Quorum System. Bulk reconfiguration works
with both Hierarchical and Mgjority Quorum Systems.

Performance Impact: Thereis practically no performance impact when removing a
follower, sinceit is not being automatically shut down (the effect of removal isthat the
server's votes are no longer being counted). When adding a server, there is no leader change
and no noticeable performance disruption. For details and graphs please see Figures 6, 7 and
8 in the paper.

The most significant disruption will happen when a leader change is caused, in one of the
following cases:

1. Leader isremoved from the ensemble.
2. Leader'sroleis changed from participant to observer.
3. The port used by the leader to send transactions to others (quorum port) is modified.

Page 9

https://www.usenix.org/conference/usenixfederatedconferencesweek/dynamic-recon%EF%AC%81guration-primarybackup-clusters

ZooKeeper Dynamic Reconfiguration

In these cases we perform aleader hand-off where the old |eader nominates a new leader.
The resulting unavailability is usually shorter than when aleader crashes since detecting
leader failure is unnecessary and electing a new leader can usually be avoided during a hand-
off (see Figures 6 and 8 in the paper).

When the client port of a server is modified, it does not drop existing client connections. New
connections to the server will have to use the new client port.

Progress guarantees. Up to the invocation of the reconfig operation, a quorum of the

old configuration is required to be available and connected for ZooK eeper to be able

to make progress. Once reconfig isinvoked, a quorum of both the old and of the new
configurations must be available. The final transition happens once (a) the new configuration
is activated, and (b) all operations scheduled before the new configuration is activated by

the leader are committed. Once (a) and (b) happen, only a quorum of the new configuration
isrequired. Note, however, that neither (a) nor (b) are visible to a client. Specifically, when
areconfiguration operation commits, it only means that an activation message was sent out
by the leader. It does not necessarily mean that a quorum of the new configuration got this
message (which isrequired in order to activate it) or that (b) has happened. If one wants

to make sure that both (@) and (b) has already occurred (for example, in order to know that

it is safe to shut down old servers that were removed), one can simply invoke an update

(set - dat a, or some other quorum operation, but not async) and wait for it to commit. An
alternative way to achieve this was to introduce another round to the reconfiguration protocol
(which, for simplicity and compatibility with Zab, we decided to avoid).

4.2.2 Incremental mode

The incremental mode allows adding and removing servers to the current configuration.
Multiple changes are allowed. For example:

> reconfig -renove 3 -add server.5=125. 23. 63. 23: 1234: 1235; 1236
Both the add and the remove options get a list of comma separated arguments (No spaces):

> reconfig -renove 3,4 -add
server. 5=l ocal host: 2111: 2112; 2113, 6=l ocal host: 2114: 2115: observer; 2116

The format of the server statement is exactly the same as described in the section Specifying
the client port and includes the client port. Notice that here instead of "server.5=" you can
just say "5=". In the example above, if server 5 isaready in the system, but has different
ports or is not an observer, it is updated and once the configuration commits becomes an
observer and starts using these new ports. Thisis an easy way to turn participants into
observers and vise versa or change any of their ports, without rebooting the server.

ZooK eeper supports two types of Quorum Systems — the ssmple Majority system (where
the leader commits operations after receiving ACKs from a magjority of voters) and amore

Page 10

https://www.usenix.org/conference/usenixfederatedconferencesweek/dynamic-recon%EF%AC%81guration-primarybackup-clusters

ZooKeeper Dynamic Reconfiguration

complex Hierarchical system, where votes of different servers have different weights and
servers are divided into voting groups. Currently, incremental reconfiguration is allowed
only if the last proposed configuration known to the leader uses a Mgjority Quorum System
(BadArgumentsException is thrown otherwise).

Incremental mode - examples using the Java API:

Thereis also an asynchronous API, and an APl accepting comma separated Strings instead of
List<String>. See src/java/main/org/apache/zookeeper/ZooK eeper.java.

4.2.3 Non-incremental mode

The second mode of reconfiguration is non-incremental, whereby a client gives a complete
specification of the new dynamic system configuration. The new configuration can either be
given in place or read from afile:

> reconfig -file newonfig.cfg //newconfig.cfgisadynamic config file, see
Dynamic configuration file

> reconfig -nenbers
server. 1=125. 23. 63. 23: 2780: 2783: parti ci pant; 2791, server. 2=125. 23. 63. 24: 2,

The new configuration may use a different Quorum System. For example, you may specify a
Hierarchical Quorum System even if the current ensemble uses a Majority Quorum System.

Bulk mode - example using the Java API:

Page 11

ZooKeeper Dynamic Reconfiguration

There is also an asynchronous API, and an APl accepting comma separated String containing
the new membersinstead of List<String>. See src/java/main/org/apache/zookeeper/
ZooK eeper.java.

4.2.4 Conditional reconfig

Sometimes (especially in non-incremental mode) a new proposed configuration depends

on what the client "believes' to be the current configuration, and should be applied only to
that configuration. Specifically, ther econf i g succeedsonly if the last configuration at the
leader has the specified version.

> reconfig -file <fil ename> -v <versi on>

In the previoudly listed Java examples, instead of -1 one could specify a configuration
version to condition the reconfiguration.

4.2.5 Error conditions

In addition to normal ZooK eeper error conditions, a reconfiguration may fail for the
following reasons:

1. another reconfig is currently in progress (ReconfiglnProgress)

2. the proposed change would leave the cluster with less than 2 participants, in case
standalone mode is enabled, or, if standalone mode is disabled then itslegal to remain
with 1 or more participants (BadArgumentsException)

3. no quorum of the new configuration was connected and up-to-date with the leader when
the reconfiguration processing began (NewConfigNoQuorum)

4. -v x was specified, but the version y of the latest configuration is not x
(BadV ersionException)

5 anincremental reconfiguration was requested but the last configuration at the leader uses
a Quorum System which is different from the Majority system (BadArgumentsException)
syntax error (BadArgumentsException)

1/O exception when reading the configuration from a file (BadArgumentsException)

Most of these are illustrated by test-casesin Reconf i gFai | ur eCases. j ava.

4.2.6 Additional comments

Liveness. To better understand the difference between incremental and non-incremental
reconfiguration, suppose that client C1 adds server D to the system while a different client
C2 adds server E. With the non-incremental mode, each client would first invoke conf i g
to find out the current configuration, and then locally create a new list of servers by adding
its own suggested server. The new configuration can then be submitted using the non-
incremental r econf i g command. After both reconfigurations complete, only one of E
or D will be added (not both), depending on which client's request arrives second to the

Page 12

ZooKeeper Dynamic Reconfiguration

leader, overwriting the previous configuration. The other client can repeat the process until
its change takes effect. This method guarantees system-wide progress (i.e., for one of the
clients), but does not ensure that every client succeeds. To have more control C2 may request
to only execute the reconfiguration in case the version of the current configuration hasn't
changed, as explained in the section Conditional reconfig. In thisway it may avoid blindly
overwriting the configuration of C1 if C1's configuration reached the leader first.

With incremental reconfiguration, both changes will take effect as they are ssmply applied
by the leader one after the other to the current configuration, whatever that is (assuming that
the second reconfig request reaches the leader after it sends a commit message for the first
reconfig request -- currently the leader will refuse to propose a reconfiguration if another
oneis aready pending). Since both clients are guaranteed to make progress, this method
guarantees stronger liveness. In practice, multiple concurrent reconfigurations are probably
rare. Non-incremental reconfiguration is currently the only way to dynamically change the
Quorum System. Incremental configuration is currently only allowed with the Mgjority
Quorum System.

Changing an observer into a follower: Clearly, changing a server that participates in voting
into an observer may fail if error (2) occurs, i.e., if fewer than the minimal alowed number
of participants would remain. However, converting an observer into a participant may
sometimes fail for a more subtle reason: Suppose, for example, that the current configuration
is(A, B, C, D), where A isthe leader, B and C are followers and D is an observer. In
addition, suppose that B has crashed. If areconfiguration is submitted where D is said to
become afollower, it will fail with error (3) since in this configuration, a majority of voters
in the new configuration (any 3 voters), must be connected and up-to-date with the leader.
An observer cannot acknowledge the history prefix sent during reconfiguration, and therefore
it does not count towards these 3 required servers and the reconfiguration will be aborted. In
case this happens, a client can achieve the same task by two reconfig commands: first invoke
areconfig to remove D from the configuration and then invoke a second command to add it
back as a participant (follower). During the intermediate state D is a non-voting follower and
can ACK the state transfer performed during the second reconfig comand.

5 Rebalancing Client Connections

When aZooK eeper cluster is started, if each client is given the same connection string (list
of servers), the client will randomly choose a server in the list to connect to, which makes
the expected number of client connections per server the same for each of the servers. We
implemented a method that preserves this property when the set of servers changes through
reconfiguration. See Sections 4 and 5.1 in the paper.

In order for the method to work, al clients must subscribe to configuration changes (by
setting a watch on /zookeeper/config either directly or through the get Confi g API

Page 13

https://www.usenix.org/conference/usenixfederatedconferencesweek/dynamic-recon%EF%AC%81guration-primarybackup-clusters

ZooKeeper Dynamic Reconfiguration

command). When the watch is triggered, the client should read the new configuration
by invoking sync and get Conf i g and if the configuration isindeed new invoke the
updat eSer ver Li st APl command. To avoid mass client migration at the same
time, it is better to have each client sleep arandom short period of time before invoking
updat eSer ver Li st .

A few examples can befound in: St at i cHost Provi der Test . j ava and
Test Reconfi g. cc

Example (thisis not arecipe, but asimplified example just to explain the general idea):

Page 14

	Table of contents
	1 Overview
	2 Changes to Configuration Format
	2.1 Specifying the client port
	2.2 The standaloneEnabled flag
	2.3 Dynamic configuration file
	2.4 Backward compatibility

	3 Upgrading to 3.5.0
	4 Dynamic Reconfiguration of the ZooKeeper Ensemble
	4.1 Retrieving the current dynamic configuration
	4.2 Modifying the current dynamic configuration
	4.2.1 General
	4.2.2 Incremental mode
	4.2.3 Non-incremental mode
	4.2.4 Conditional reconfig
	4.2.5 Error conditions
	4.2.6 Additional comments

	5 Rebalancing Client Connections

